Diferencia entre revisiones de «UASB»

5 bytes eliminados ,  29 jul 2017
m
Texto reemplazado: «== » por «== »
m (Texto reemplazado: « » por « »)
m (Texto reemplazado: «== » por «== »)
Línea 2: Línea 2:


==Características==
==Características==
En los sistemas anaerobios de flujo ascendente, y bajo ciertas condiciones, se puede llegar a observar que las bacterias pueden llegar a agregarse de forma natural formando flóculos y gránulos. Estos densos agregados poseen unas buenas cualidades de sedimentación y no son susceptibles al lavado del sistema bajo condiciones prácticas del reactor. La retención de fango activo, ya sea en forma granular o floculenta, hace posible la realización de un buen tratamiento incluso a altas tasas de cargas orgánicas. La turbulencia natural causada por el propio caudal del influente y de la producción de biogás provoca el buen contacto entre agua residual y fango biológico en el sistema UASB. En los sistemas UASB pueden aplicarse mayores cargas orgánicas que en los procesos aerobios. Además, se requiere un menor volumen de reacción y de espacio, y al mismo tiempo, se produce una gran cantidad de biogás, y por tanto de energía.
En los sistemas anaerobios de flujo ascendente, y bajo ciertas condiciones, se puede llegar a observar que las bacterias pueden llegar a agregarse de forma natural formando flóculos y gránulos. Estos densos agregados poseen unas buenas cualidades de sedimentación y no son susceptibles al lavado del sistema bajo condiciones prácticas del reactor. La retención de fango activo, ya sea en forma granular o floculenta, hace posible la realización de un buen tratamiento incluso a altas tasas de cargas orgánicas. La turbulencia natural causada por el propio caudal del influente y de la producción de biogás provoca el buen contacto entre agua residual y fango biológico en el sistema UASB. En los sistemas UASB pueden aplicarse mayores cargas orgánicas que en los procesos aerobios. Además, se requiere un menor volumen de reacción y de espacio, y al mismo tiempo, se produce una gran cantidad de biogás, y por tanto de energía.


Línea 24: Línea 23:


==Proceso de granulación==
==Proceso de granulación==
El fango granular constituye el corazón de la tecnología UASB y EGSB. Un fango granular es un agregado de Microorganismos formados durante el tratamiento de agua residual en un medio en el que exista un régimen hidráulico constante de flujo ascendente. En ausencia de algún tipo de soporte, las condiciones del tipo de flujo crea un ambiente selectivo en el cual sólo esos organismos capaces de anclarse a lo otros, sobrevive y prolifera. La configuración de los agregados dentro de la Biopelícula densa y compacta es a lo que se denomina gránulo. Debido a su gran tamaño de partícula (generalmente en el rango de 0.5 a 2 mm de diámetro), los gránulos resisten el lavado del sistema de reacción, permitiendo cargas hidráulicas elevadas. Además, las biopelículas son compactas, permitiendo elevadas concentraciones de microorganismos activos y de este modo poder tratar elevadas cargas volumétricas en los reactores UASB. Un gramo de fango granular (peso seco) puede catalizar la conversión de 0.5 a 1 g de DQO al día.
El fango granular constituye el corazón de la tecnología UASB y EGSB. Un fango granular es un agregado de Microorganismos formados durante el tratamiento de agua residual en un medio en el que exista un régimen hidráulico constante de flujo ascendente. En ausencia de algún tipo de soporte, las condiciones del tipo de flujo crea un ambiente selectivo en el cual sólo esos organismos capaces de anclarse a lo otros, sobrevive y prolifera. La configuración de los agregados dentro de la Biopelícula densa y compacta es a lo que se denomina gránulo. Debido a su gran tamaño de partícula (generalmente en el rango de 0.5 a 2 mm de diámetro), los gránulos resisten el lavado del sistema de reacción, permitiendo cargas hidráulicas elevadas. Además, las biopelículas son compactas, permitiendo elevadas concentraciones de microorganismos activos y de este modo poder tratar elevadas cargas volumétricas en los reactores UASB. Un gramo de fango granular (peso seco) puede catalizar la conversión de 0.5 a 1 g de DQO al día.
La composición del gránulo está estratificada. En el centro se localizan los agregados de ''Methanosaeta'' (principalmente), y otros organismos Metanógenos, como ''Methanothrix'' y ''Methanosarcina''. En la siguiente capa están localizados organismos productores y consumidores de hidrógeno, en una asociación simbiótica. En la capa superficial se localizan los organismos que realizan las primeras etapas de degradación anaerobia, como los acidógenos y otros organimos consumidores de hidrógeno. Esta estructura está condicionada por la [[presión]] parcial de hidrógeno, en un delicado equilibrio que sólo es posible bajo condiciones determinadas.
La composición del gránulo está estratificada. En el centro se localizan los agregados de ''Methanosaeta'' (principalmente), y otros organismos Metanógenos, como ''Methanothrix'' y ''Methanosarcina''. En la siguiente capa están localizados organismos productores y consumidores de hidrógeno, en una asociación simbiótica. En la capa superficial se localizan los organismos que realizan las primeras etapas de degradación anaerobia, como los acidógenos y otros organimos consumidores de hidrógeno. Esta estructura está condicionada por la [[presión]] parcial de hidrógeno, en un delicado equilibrio que sólo es posible bajo condiciones determinadas.


===Formación del fango granular===
===Formación del fango granular===
El proceso de formación de fango granular es uno de las cuestiones más interesantes y enigmáticas cuando se intenta entender los fundamentos de las tecnologías de fango granular, por lo que alrededor de este tema han surgido numerosas investigaciones. Muchas teorías sobre la granulación confirman que las bacterias metanógenas acetotróficas del género Methanosaeta juegan un papel clave en la granulación.
El proceso de formación de fango granular es uno de las cuestiones más interesantes y enigmáticas cuando se intenta entender los fundamentos de las tecnologías de fango granular, por lo que alrededor de este tema han surgido numerosas investigaciones. Muchas teorías sobre la granulación confirman que las bacterias metanógenas acetotróficas del género Methanosaeta juegan un papel clave en la granulación.


Línea 39: Línea 36:


==Aplicaciones==
==Aplicaciones==
La tecnología para el tratamiento anaerobio a cargas altas constituye una tecnología madura. Al menos 1.200 plantas a escala industrial se han registrado en el mundo para el tratamiento de efluentes industriales (en la actualidad se estima que hay unas 2.500). El abanico de usos de esta tecnología es muy amplio, ya que el tratamiento anaerobio de aguas residuales no se limita únicamente a la degradación en aguas residuales de contaminación orgánica.
La tecnología para el tratamiento anaerobio a cargas altas constituye una tecnología madura. Al menos 1.200 plantas a escala industrial se han registrado en el mundo para el tratamiento de efluentes industriales (en la actualidad se estima que hay unas 2.500). El abanico de usos de esta tecnología es muy amplio, ya que el tratamiento anaerobio de aguas residuales no se limita únicamente a la degradación en aguas residuales de contaminación orgánica.


==Enlaces externos==
==Enlaces externos==
www.cbm.uam.es/jlsanz/investigacion/default.htm [http://www.cbm.uam.es/jlsanz/investigacion/default.htm]
www.cbm.uam.es/jlsanz/investigacion/default.htm [http://www.cbm.uam.es/jlsanz/investigacion/default.htm]


Artículo procedente de Urbipedia.org. Con licencia Creative Commons CC-BY-NC-SA excepto donde se indica otro tipo de licencia.
Origen o autoría y licencia de imágenes accesible desde PDF, pulsando sobre cada imagen.
https://www.urbipedia.org/hoja/Especial:MobileDiff/481548